3QYQ_1|Chains A, B, C, D|Deoxyribose-phosphate aldolase, putative|Toxoplasma gondii (508771)
>1WKP_1|Chains A, B, C, D|FLOWERING LOCUS T protein|Arabidopsis thaliana (3702)
>4KLZ_1|Chain A|GTP-binding protein Rit1|Homo sapiens (9606)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3QYQ_1)}(2) \setminus P_{f(1WKP_1)}(2)|=101\),
\(|P_{f(1WKP_1)}(2) \setminus P_{f(3QYQ_1)}(2)|=60\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000010101100010000110110111100100000111100111001111110101111011000110011011110101110110101010010101111100110010011010010001101000101110010011110010111011010110110011111101110110000111100101101011011100011000001010110001111001110101101011001011101110011001100010111110110010000001001110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{464
}{\log_{20}
464}-\frac{171}{\log_{20}171})=86.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
3QYQ_1
1WKP_1
105
82.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]