Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3QMO_1)}(2) \setminus P_{f(1IBQ_1)}(2)|=150\),
\(|P_{f(1IBQ_1)}(2) \setminus P_{f(3QMO_1)}(2)|=29\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110111101111100110000000100001000010010011000000000011010000010110010111010100100110010111011001111001110011000001100110001001000101100100000111111000101111010001100001100111000111010100111111100100011000000111100111011010010100100000101100101000111101011010000101101101100101111001111111111010111000001001100001011000110000111110010111000100101001010101011100010000011001001001011110010100000010011000011100110011001000111011110011111011101010000010000100000010101000100101000111010110001011010111110010101111001101111101011110110010010100111011101100101001100010101100101001010001011101000010010101110000001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{935
}{\log_{20}
935}-\frac{325}{\log_{20}325})=163.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3QMO_1
1IBQ_1
208
156.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]