Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3PZW_1)}(2) \setminus P_{f(8WGJ_1)}(2)|=293\),
\(|P_{f(8WGJ_1)}(2) \setminus P_{f(3PZW_1)}(2)|=10\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11011001010111110001010101011001011110010101101001010101011000110110001101111001101010101011111110100010101110010101100010101100011000010001011110000110001111100000010010101010000000100001000110100000110111110001101001001011010010000010110110000110100001101100010011011100110100011010010010010011101100110011111110010000100110110101101000111000011001111101011011001110001011101000001010010101001001110001111000011110100100100100010001111000101011110101100110101110011111001100011111010111000000011001100011101111100001011011001101000001010111000110101110001110000101001100011100011110110011110010010110111000101101101111100110001110010000100000100110011001010100011110100100110101111111011011101100101111100101000111001010000110000010100100011011010110110001000101100001010000011011001100100100011000001010100111101100110100001101011100101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{863
}{\log_{20}
863}-\frac{24}{\log_{20}24})=244.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3PZW_1
8WGJ_1
312
160.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]