Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3PVZ_1)}(2) \setminus P_{f(4MNK_1)}(2)|=87\),
\(|P_{f(4MNK_1)}(2) \setminus P_{f(3PVZ_1)}(2)|=52\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001100110111000011000101000010011000011111111011011000110001001011010000110110010001101010100111011010001110101000011010110010000011011011010110000010001011100010100001101101111000110111100000111001011011100101101100010000111110010001101000101011001110000111101001101101101110010011001010000001001100111010110110000001000100110000010110100111100001000011011000110100000100001101111111011000010010001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{747
}{\log_{20}
747}-\frac{348}{\log_{20}348})=108.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3PVZ_1
4MNK_1
137
126.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]