Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3PLA_1)}(2) \setminus P_{f(4MMU_1)}(2)|=166\),
\(|P_{f(4MMU_1)}(2) \setminus P_{f(3PLA_1)}(2)|=24\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101011001111110000101100100100110100011000011110101011001010011100010110101110010001000100110001101110101100000000110010100000010011000011110110110010001011000100100101101001100000010110011001110100100111000010011011000111010000101101110011010010001000101110011101011111111101101110100110111001011110011101100110110011110011100010100101101111011111010110101110010001000100100011000000000
Pair
\(Z_2\)
Length of longest common subsequence
3PLA_1,4MMU_1
190
4
3PLA_1,6IUB_1
152
6
4MMU_1,6IUB_1
162
3
Newick tree
[
4MMU_1:92.00,
[
3PLA_1:76,6IUB_1:76
]:16.00
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{470
}{\log_{20}
470}-\frac{82}{\log_{20}82})=117.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3PLA_1
4MMU_1
144
85.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]