Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3PHM_1)}(2) \setminus P_{f(3QVW_1)}(2)|=93\),
\(|P_{f(3QVW_1)}(2) \setminus P_{f(3PHM_1)}(2)|=97\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0001101111011010011101011110100000010101011100011110101010100100111110011000100110001000001011011100111001101111011100100011101001010110000000011010100110111111011101001111100110101000001011011100100001101101001001010111000101101101100110101101111001101010001001110000010010110010100110110000011101100111010111
Pair
\(Z_2\)
Length of longest common subsequence
3PHM_1,3QVW_1
190
4
3PHM_1,7RYQ_1
182
3
3QVW_1,7RYQ_1
162
4
Newick tree
[
3PHM_1:96.69,
[
7RYQ_1:81,3QVW_1:81
]:15.69
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{702
}{\log_{20}
702}-\frac{310}{\log_{20}310})=108.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3PHM_1
3QVW_1
136
123.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]