Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3PEY_1)}(2) \setminus P_{f(9CQI_1)}(2)|=81\),
\(|P_{f(9CQI_1)}(2) \setminus P_{f(3PEY_1)}(2)|=69\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11110010011111011011011010010010001111110011001110000101001110101100101001010110111000110001011001101001000111100100000101011110110110110001101001011110010011000111000101001110000111101011011000100111010010100001010110010100000100101100101110110011111000010110101000100101101010000000110010010001110001110110110101110001101101010110010011001011001111011000001011011000110101001100010010011001100
Pair
\(Z_2\)
Length of longest common subsequence
3PEY_1,9CQI_1
150
4
3PEY_1,3HLA_1
190
3
9CQI_1,3HLA_1
178
5
Newick tree
[
3HLA_1:97.06,
[
3PEY_1:75,9CQI_1:75
]:22.06
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{782
}{\log_{20}
782}-\frac{387}{\log_{20}387})=106.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3PEY_1
9CQI_1
138
135
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]