Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3PAG_1)}(2) \setminus P_{f(3QHD_1)}(2)|=101\),
\(|P_{f(3QHD_1)}(2) \setminus P_{f(3PAG_1)}(2)|=65\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100000001100010010001111100100100010111010000111001011011111000010000110101000001110001011011110101100011000110110001001011000110010011111110101100101100110001110100000100111100101001010011111101011110111001010011101010100110101000100001001111
Pair
\(Z_2\)
Length of longest common subsequence
3PAG_1,3QHD_1
166
6
3PAG_1,4IHC_1
183
4
3QHD_1,4IHC_1
193
6
Newick tree
[
4IHC_1:97.43,
[
3PAG_1:83,3QHD_1:83
]:14.43
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{428
}{\log_{20}
428}-\frac{183}{\log_{20}183})=72.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
3PAG_1
3QHD_1
90
78
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]