3OYP_1|Chains A, B|Serine protease NS3|Hepatitis C virus (isolate Japanese) (11116)
>3LQZ_1|Chain A|HLA class II histocompatibility antigen, DP alpha 1 chain|Homo sapiens (9606)
>7VEJ_1|Chains A, B|Glycosyltransferase|Phytolacca americana (3527)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3OYP_1)}(2) \setminus P_{f(3LQZ_1)}(2)|=85\),
\(|P_{f(3LQZ_1)}(2) \setminus P_{f(3OYP_1)}(2)|=88\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110100000011110110010100000101010110010001110010110101001110001111011100100010001111111111001010001000101100010111100010001011010110010100111110101011111011100011101101111001000100111000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{368
}{\log_{20}
368}-\frac{181}{\log_{20}181})=55.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
3OYP_1
3LQZ_1
74
72
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]