Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3OIC_1)}(2) \setminus P_{f(4YIN_1)}(2)|=76\),
\(|P_{f(4YIN_1)}(2) \setminus P_{f(3OIC_1)}(2)|=90\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000111010001110111101100100111001000011100100100111011110101101101001100100011010111001101110111010000101010101011110100110110001110110100110100100000111001110110001110101001110110111100011001100001100100001110110100110010111000101101001110110011110000000
Pair
\(Z_2\)
Length of longest common subsequence
3OIC_1,4YIN_1
166
4
3OIC_1,3QKS_1
150
6
4YIN_1,3QKS_1
146
3
Newick tree
[
3OIC_1:81.03,
[
3QKS_1:73,4YIN_1:73
]:8.03
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{504
}{\log_{20}
504}-\frac{246}{\log_{20}246})=73.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
3OIC_1
4YIN_1
93
91
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]