Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3OAN_1)}(2) \setminus P_{f(1SPF_1)}(2)|=86\),
\(|P_{f(1SPF_1)}(2) \setminus P_{f(3OAN_1)}(2)|=12\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010010000011100010111100000100001110101100000010101110001110111000110010001101000011011110010100111010001010011111101001101000000
Pair
\(Z_2\)
Length of longest common subsequence
3OAN_1,1SPF_1
98
3
3OAN_1,9MQY_1
177
4
1SPF_1,9MQY_1
223
3
Newick tree
[
9MQY_1:11.73,
[
3OAN_1:49,1SPF_1:49
]:63.73
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{165
}{\log_{20}
165}-\frac{35}{\log_{20}35})=45.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
3OAN_1
1SPF_1
57
34
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]