Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3NST_1)}(2) \setminus P_{f(6LBM_1)}(2)|=169\),
\(|P_{f(6LBM_1)}(2) \setminus P_{f(3NST_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000100001001101000101011000100001111100110111101000111011010011011000101111101100011111011111010101011111001110001100000001101110101110110101101001011101110101010000011111011011100010111101100010001010100100110011101101100011011110010100011000111000101101111011100101001101110100010010110001000011001101101111111010000100101111101111010100010110100111101101100010100
Pair
\(Z_2\)
Length of longest common subsequence
3NST_1,6LBM_1
207
3
3NST_1,4ESM_1
166
4
6LBM_1,4ESM_1
181
3
Newick tree
[
6LBM_1:10.51,
[
3NST_1:83,4ESM_1:83
]:18.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{471
}{\log_{20}
471}-\frac{103}{\log_{20}103})=110.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3NST_1
6LBM_1
140
90
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]