Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3NPZ_1)}(2) \setminus P_{f(6RRU_1)}(2)|=11\),
\(|P_{f(6RRU_1)}(2) \setminus P_{f(3NPZ_1)}(2)|=197\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110111110001010011001111000100100011001000000101110011000000011010000010010000110111011001001100110010110011011100110100000011011011100101000000101110111010110000010100011001000000100010110001100000
Pair
\(Z_2\)
Length of longest common subsequence
3NPZ_1,6RRU_1
208
4
3NPZ_1,2MTS_1
150
3
6RRU_1,2MTS_1
292
3
Newick tree
[
6RRU_1:13.80,
[
3NPZ_1:75,2MTS_1:75
]:64.80
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1232
}{\log_{20}
1232}-\frac{199}{\log_{20}199})=276.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3NPZ_1
6RRU_1
353
208
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]