Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3NLQ_1)}(2) \setminus P_{f(2YUG_1)}(2)|=177\),
\(|P_{f(2YUG_1)}(2) \setminus P_{f(3NLQ_1)}(2)|=33\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01011010010001110001010001001000010110111100000010010000011111001100000010011001010010010001000000010000110110011001000110101001011010000010111001000100100010100110111000010001011000110011000101001101101010010100110110101011111101010010110111011101110010101100111010111110011101111010101101101100111000000000011001100101010000011000111010111100100001011000010001100100000001101101111111101010111000110001010100010110001101
Pair
\(Z_2\)
Length of longest common subsequence
3NLQ_1,2YUG_1
210
3
3NLQ_1,1QJH_1
208
3
2YUG_1,1QJH_1
150
2
Newick tree
[
3NLQ_1:11.63,
[
1QJH_1:75,2YUG_1:75
]:37.63
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{577
}{\log_{20}
577}-\frac{155}{\log_{20}155})=122.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3NLQ_1
2YUG_1
165
110
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]