Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3MYQ_1)}(2) \setminus P_{f(5WNA_1)}(2)|=83\),
\(|P_{f(5WNA_1)}(2) \setminus P_{f(3MYQ_1)}(2)|=57\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001101000110010001111010000110100001000101011010000100101100101101010000001110111101000110101011010101000010000011010110100001011011001011111111101101011100110110010001001010010101111001001001101001111001011110011010000110100101010101001110010110110000101010
Pair
\(Z_2\)
Length of longest common subsequence
3MYQ_1,5WNA_1
140
4
3MYQ_1,2NTU_1
163
3
5WNA_1,2NTU_1
153
4
Newick tree
[
2NTU_1:81.83,
[
3MYQ_1:70,5WNA_1:70
]:11.83
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{491
}{\log_{20}
491}-\frac{231}{\log_{20}231})=74.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
3MYQ_1
5WNA_1
95
87.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]