Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3LPG_1)}(2) \setminus P_{f(8OUP_1)}(2)|=182\),
\(|P_{f(8OUP_1)}(2) \setminus P_{f(3LPG_1)}(2)|=30\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00110110010001001011111010000011000110011000011111101000110101000110110000111101111001110101100010111000011000110011010101011110010101010001010011111110000100000010011001110001110001001100101100110000010101011101010101001000111010100101011010110110101001010100000001011011100111010011100011010111000010101011001111000111011110000000010100110110001111100011111010111110110010010000110100001010110011100000101111011001000101100011111010001010011001011100100001001101101000011010010100100110001111000100111100011001111001000110000001110100011001011110011011011000111011100011100000100111110001011011001001100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{767
}{\log_{20}
767}-\frac{162}{\log_{20}162})=170.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3LPG_1
8OUP_1
220
138
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]