Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3LGN_1)}(2) \setminus P_{f(1JPR_1)}(2)|=30\),
\(|P_{f(1JPR_1)}(2) \setminus P_{f(3LGN_1)}(2)|=163\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111100010100101000100100001100101100111000100000001011011000001001100011001000101000001000111000110001100000
Pair
\(Z_2\)
Length of longest common subsequence
3LGN_1,1JPR_1
193
4
3LGN_1,5RTZ_1
138
3
1JPR_1,5RTZ_1
187
3
Newick tree
[
1JPR_1:10.22,
[
3LGN_1:69,5RTZ_1:69
]:33.22
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{485
}{\log_{20}
485}-\frac{110}{\log_{20}110})=112.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3LGN_1
1JPR_1
141
89.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]