Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3LED_1)}(2) \setminus P_{f(6XDK_1)}(2)|=79\),
\(|P_{f(6XDK_1)}(2) \setminus P_{f(3LED_1)}(2)|=64\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000010001010110111111011001100100101101100011010110010101101011010000110010110000111011110101101111000000101110111011001100110100011111010001001011111010011111111101011000101110011011111010111110101001010100000011110110111100100101110111001000100010001111001110100010011100100110011111001110010011101011001110010101001110011100100000111100010000110111100000011010111100111100110111000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{761
}{\log_{20}
761}-\frac{369}{\log_{20}369})=106.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3LED_1
6XDK_1
132
128
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]