Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3LCE_1)}(2) \setminus P_{f(5MEP_1)}(2)|=92\),
\(|P_{f(5MEP_1)}(2) \setminus P_{f(3LCE_1)}(2)|=108\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010000010001010110111110000000010001101000011100101101111100111000001101010101100100010101110101111100110011010100010010010001011100111010101011001011001010010100000111001110011100110000110111000011111111110000010111101010000011100011001100011111
Pair
\(Z_2\)
Length of longest common subsequence
3LCE_1,5MEP_1
200
4
3LCE_1,7AVV_1
178
3
5MEP_1,7AVV_1
196
4
Newick tree
[
5MEP_1:10.12,
[
3LCE_1:89,7AVV_1:89
]:13.12
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{522
}{\log_{20}
522}-\frac{246}{\log_{20}246})=78.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
3LCE_1
5MEP_1
104
98
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]