Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3KXK_1)}(2) \setminus P_{f(7UBE_1)}(2)|=182\),
\(|P_{f(7UBE_1)}(2) \setminus P_{f(3KXK_1)}(2)|=0\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001111100010001111101100010010011001010101000010010000010011110010100110100010100110011111011110110001010101101000111100000000110001111110011000101000010011001001011000010000000110111110000100011001011000100011001010001111000011110011110111101101111010010000111111000100011100100010110011101011110100100101010001011001000100111011110110000101100010011001010000000
Pair
\(Z_2\)
Length of longest common subsequence
3KXK_1,7UBE_1
182
2
3KXK_1,2IRO_1
191
2
7UBE_1,2IRO_1
11
0
Newick tree
[
3KXK_1:10.66,
[
7UBE_1:5.5,2IRO_1:5.5
]:10.16
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{372
}{\log_{20}
372}-\frac{8}{\log_{20}8})=120.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3KXK_1
7UBE_1
151
76.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]