3KWG_1|Chains A, B|Non-structural protein 1|Influenza A virus (381517)
>8DGQ_1|Chains A, B|Ras GTPase-activating protein 1|Homo sapiens (9606)
>8PMF_1|Chain A[auth B]|DNA|Homo sapiens (9606)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3KWG_1)}(2) \setminus P_{f(8DGQ_1)}(2)|=53\),
\(|P_{f(8DGQ_1)}(2) \setminus P_{f(3KWG_1)}(2)|=114\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000001000001011001100010010100100011111100010111010100111000111010101110010011110110001111101011101110010010011111111101000010100010011110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{414
}{\log_{20}
414}-\frac{141}{\log_{20}141})=81.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
3KWG_1
8DGQ_1
102
77
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]