Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3KTY_1)}(2) \setminus P_{f(1JWF_1)}(2)|=76\),
\(|P_{f(1JWF_1)}(2) \setminus P_{f(3KTY_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00110011001011100100110110110110011110111111011010101011111011101100111000100111110111110001001111100100111110001000011111111100011100101010001001110100001011011011110100111
Pair
\(Z_2\)
Length of longest common subsequence
3KTY_1,1JWF_1
149
3
3KTY_1,8XOP_1
144
4
1JWF_1,8XOP_1
159
4
Newick tree
[
1JWF_1:78.64,
[
3KTY_1:72,8XOP_1:72
]:6.64
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{320
}{\log_{20}
320}-\frac{147}{\log_{20}147})=53.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
3KTY_1
1JWF_1
63
61.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]