Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3KTK_1)}(2) \setminus P_{f(5PZM_1)}(2)|=26\),
\(|P_{f(5PZM_1)}(2) \setminus P_{f(3KTK_1)}(2)|=164\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0111011000001001001000110001111101100011001100111111001000101010011101011111000101101010010111110111111111001000111000111001111101010010111001111000100111000101101100000000100100110011100110000000000
Pair
\(Z_2\)
Length of longest common subsequence
3KTK_1,5PZM_1
190
3
3KTK_1,2LFB_1
148
3
5PZM_1,2LFB_1
236
3
Newick tree
[
5PZM_1:11.07,
[
3KTK_1:74,2LFB_1:74
]:42.07
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{773
}{\log_{20}
773}-\frac{199}{\log_{20}199})=160.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3KTK_1
5PZM_1
203
135
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]