Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3KQG_1)}(2) \setminus P_{f(7PPQ_1)}(2)|=57\),
\(|P_{f(7PPQ_1)}(2) \setminus P_{f(3KQG_1)}(2)|=130\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010101101000100101100010110101001001100000110110011001010100101110010010010100000100100000001100011111011110011101010110001100100101111101001100000101011010110011000011110001011001
Pair
\(Z_2\)
Length of longest common subsequence
3KQG_1,7PPQ_1
187
3
3KQG_1,1JQS_1
144
4
7PPQ_1,1JQS_1
185
3
Newick tree
[
7PPQ_1:99.01,
[
3KQG_1:72,1JQS_1:72
]:27.01
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{543
}{\log_{20}
543}-\frac{182}{\log_{20}182})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3KQG_1
7PPQ_1
135
100.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]