Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3KMQ_1)}(2) \setminus P_{f(9DVR_1)}(2)|=46\),
\(|P_{f(9DVR_1)}(2) \setminus P_{f(3KMQ_1)}(2)|=104\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11110000100010110000111011011101011111100001010011110011100000000101000111000110010010011101011101001101101101101001111111101000111101001011101011101100000011000110001011001011000110111100110001111010101000011011011100101010011001100001101000110100000110111001100011101010111001100001000001010111101001001100110010110110000011010000110010011110000101011010100110010110000011111001001011000101001011001111000101110110010100011011111100110000011011011101100001010110110101111000
Pair
\(Z_2\)
Length of longest common subsequence
3KMQ_1,9DVR_1
150
4
3KMQ_1,4HOO_1
173
4
9DVR_1,4HOO_1
171
4
Newick tree
[
4HOO_1:89.36,
[
3KMQ_1:75,9DVR_1:75
]:14.36
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1223
}{\log_{20}
1223}-\frac{476}{\log_{20}476})=193.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3KMQ_1
9DVR_1
250
203
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]