Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3KJT_1)}(2) \setminus P_{f(7WXS_1)}(2)|=141\),
\(|P_{f(7WXS_1)}(2) \setminus P_{f(3KJT_1)}(2)|=52\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110100101111101111001110110010000110101001001000110111010110111010001110100111101010011000101101011000101110111101101100001110110010011110001010100111101001010111111011011000010001001110011101110111011000010100000110111001001101011111001000010011011101010100111111011101101000110011000110001101100001111111000000110010111010010010111011010111011001110110100010011001000100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{501
}{\log_{20}
501}-\frac{129}{\log_{20}129})=110.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3KJT_1
7WXS_1
138
94
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]