Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3KIN_1)}(2) \setminus P_{f(4BBK_1)}(2)|=99\),
\(|P_{f(4BBK_1)}(2) \setminus P_{f(3KIN_1)}(2)|=51\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011000101100101100101101001110101000111101010110011110000001001010011001101001011101000010000101010010111111011001100100100010101010010101001001101000011100000011010100001100100110110010100011100100000000011110100001000001010101101110001
Pair
\(Z_2\)
Length of longest common subsequence
3KIN_1,4BBK_1
150
3
3KIN_1,4FLT_1
171
4
4BBK_1,4FLT_1
199
10
Newick tree
[
4FLT_1:97.97,
[
3KIN_1:75,4BBK_1:75
]:22.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{403
}{\log_{20}
403}-\frac{165}{\log_{20}165})=71.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
3KIN_1
4BBK_1
90
76
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]