Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3KEE_1)}(2) \setminus P_{f(3DFO_1)}(2)|=51\),
\(|P_{f(3DFO_1)}(2) \setminus P_{f(3KEE_1)}(2)|=121\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111010000001111011001010000010101011001000111001011010100111000111101110010001000111101111100101000100010110001011110001000101101011001010011111010101111101110001110110111100100010010000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{553
}{\log_{20}
553}-\frac{190}{\log_{20}190})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3KEE_1
3DFO_1
134
101
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]