Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3KCF_1)}(2) \setminus P_{f(9HLC_1)}(2)|=48\),
\(|P_{f(9HLC_1)}(2) \setminus P_{f(3KCF_1)}(2)|=112\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001010011100100100110010001010111111000110011100011010110110101010011101100000001100101000111000011111110000010100111100000010110010000101011101110010111010101110010111100010000111000100011011111000010001011100011000011101100010100100100101011111110110000111100000110001110010100100110000101011001000011011101100010101110101101000100100001101
Pair
\(Z_2\)
Length of longest common subsequence
3KCF_1,9HLC_1
160
4
3KCF_1,8FLN_1
172
5
9HLC_1,8FLN_1
202
4
Newick tree
[
8FLN_1:97.96,
[
3KCF_1:80,9HLC_1:80
]:17.96
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{970
}{\log_{20}
970}-\frac{342}{\log_{20}342})=167.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3KCF_1
9HLC_1
209
161.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]