Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3KAB_1)}(2) \setminus P_{f(1CET_1)}(2)|=58\),
\(|P_{f(1CET_1)}(2) \setminus P_{f(3KAB_1)}(2)|=114\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10011100001111100110000101001001001001001010000110010101101000011100000001001000010000001101101010010010001001100100000101010111100101001100101110010101111000110111000
Pair
\(Z_2\)
Length of longest common subsequence
3KAB_1,1CET_1
172
3
3KAB_1,9GSX_1
192
4
1CET_1,9GSX_1
154
4
Newick tree
[
3KAB_1:95.38,
[
1CET_1:77,9GSX_1:77
]:18.38
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{483
}{\log_{20}
483}-\frac{167}{\log_{20}167})=92.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
3KAB_1
1CET_1
116
88.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]