Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3IXJ_1)}(2) \setminus P_{f(6ANA_1)}(2)|=226\),
\(|P_{f(6ANA_1)}(2) \setminus P_{f(3IXJ_1)}(2)|=1\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0110110010100101001010110110010111001000111111101110000000100000010011011000101010110011011011010101011110000011101001011111101011010001011100110000110110101011111100001110111011111100010010110011000100011110101010010100000000001100100010110011011100101100000110111110011010110011011111010111010000101011100010110011000000001110000010111111101101110010001111101001000100111011110101000100
Pair
\(Z_2\)
Length of longest common subsequence
3IXJ_1,6ANA_1
227
0
3IXJ_1,4NYE_1
162
3
6ANA_1,4NYE_1
163
0
Newick tree
[
6ANA_1:10.06,
[
3IXJ_1:81,4NYE_1:81
]:23.06
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{510
}{\log_{20}
510}-\frac{122}{\log_{20}122})=114.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3IXJ_1
6ANA_1
165
83.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]