Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3IIX_1)}(2) \setminus P_{f(7YGL_1)}(2)|=121\),
\(|P_{f(7YGL_1)}(2) \setminus P_{f(3IIX_1)}(2)|=42\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101001100100001000110011010001100111011001000011001010111010010000010011000000100001010011001011101110011100100100110110011001001111101011011000000100111000110000101110001010001000100110100110001110111111001001100111100001011111111101001110000101010101111001111000111001110111110010100110111101010100010010110101100001011011011011100110011100011001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{532
}{\log_{20}
532}-\frac{184}{\log_{20}184})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3IIX_1
7YGL_1
128
96
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]