Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3IEE_1)}(2) \setminus P_{f(3VGJ_1)}(2)|=62\),
\(|P_{f(3VGJ_1)}(2) \setminus P_{f(3IEE_1)}(2)|=107\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110001100001111001010011011000000111100110000101110010001001110111111110000111101100100000001000001110100010101000100100001001001101000100010000001101101100010111110011010110100100010011010100001011010101101000101100111101001010000111001001100100100010000100011001100011
Pair
\(Z_2\)
Length of longest common subsequence
3IEE_1,3VGJ_1
169
4
3IEE_1,7WKY_1
168
3
3VGJ_1,7WKY_1
195
4
Newick tree
[
3VGJ_1:93.51,
[
3IEE_1:84,7WKY_1:84
]:9.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{643
}{\log_{20}
643}-\frac{270}{\log_{20}270})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3IEE_1
3VGJ_1
131
111.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]