Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3HXM_1)}(2) \setminus P_{f(1QHA_1)}(2)|=43\),
\(|P_{f(1QHA_1)}(2) \setminus P_{f(3HXM_1)}(2)|=127\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001100011100111011010010110101110111100010111101100111101011011101011011110101101100010010101001101001100011011100110001001011110111100000101111011111110111000111110101100110010101111010111001001000001011011000100111111101100010010101001101111101001001110101111111010010000101110111000000000110111001111010110101001011011100110011011011100100011111010110111011001110111101101010010101001111001100100011011111011111000001011110011100110111000000010011111110111011110110110111110111000101111101111011011101101011001100111011000111100011011001111001011000111110111001110011010001110101101011011011100001111010001010101101100110011011100110100101101111101111101100110011011100100100001111
Pair
\(Z_2\)
Length of longest common subsequence
3HXM_1,1QHA_1
170
4
3HXM_1,2OHR_1
160
4
1QHA_1,2OHR_1
148
6
Newick tree
[
3HXM_1:85.19,
[
2OHR_1:74,1QHA_1:74
]:11.19
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1602
}{\log_{20}
1602}-\frac{685}{\log_{20}685})=228.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3HXM_1
1QHA_1
277
242.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]