Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3HLK_1)}(2) \setminus P_{f(7CLX_1)}(2)|=137\),
\(|P_{f(7CLX_1)}(2) \setminus P_{f(3HLK_1)}(2)|=58\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10101001101101110111011101110001001101110111100110101010000111101010001001101010011111101111011111111010011101100010011110101101001011011000000001111110001101101010111110111111110111011111000101111011111111000000110010010100100110011001010111111111001101010110110110111110101101110100010011111100001010001010110110011011000011110010001111110000010001010010001010100010110010010010110111001010111101111110101011101011001001100011100101100110000000
Pair
\(Z_2\)
Length of longest common subsequence
3HLK_1,7CLX_1
195
3
3HLK_1,6XTQ_1
189
4
7CLX_1,6XTQ_1
184
4
Newick tree
[
3HLK_1:97.31,
[
6XTQ_1:92,7CLX_1:92
]:5.31
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{638
}{\log_{20}
638}-\frac{192}{\log_{20}192})=126.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3HLK_1
7CLX_1
161
115.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]