Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3HBR_1)}(2) \setminus P_{f(6IRJ_1)}(2)|=127\),
\(|P_{f(6IRJ_1)}(2) \setminus P_{f(3HBR_1)}(2)|=56\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011110111111011111111001000001010100000011111100000011000100100111110010110011110111100000110101000011010000011011000111100011001101010011011001000101010011101110101000101100100001010000001100111001010011010010000101011111111010001111110101100011110011000110000111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{394
}{\log_{20}
394}-\frac{129}{\log_{20}129})=80.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
3HBR_1
6IRJ_1
107
79.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]