Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3HBK_1)}(2) \setminus P_{f(7RGR_1)}(2)|=94\),
\(|P_{f(7RGR_1)}(2) \setminus P_{f(3HBK_1)}(2)|=56\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000101111111011100100000101111110100001101100011100111100101110000100000110110010001101010101001100110011000000010101101011001001010100011100011010010000010101110100111011100010011011011000010001001101000101000111111011010111000100111001010010
Pair
\(Z_2\)
Length of longest common subsequence
3HBK_1,7RGR_1
150
4
3HBK_1,1JLK_1
150
3
7RGR_1,1JLK_1
152
3
Newick tree
[
1JLK_1:75.66,
[
3HBK_1:75,7RGR_1:75
]:0.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{413
}{\log_{20}
413}-\frac{168}{\log_{20}168})=72.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
3HBK_1
7RGR_1
92
76
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]