Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3GIJ_1)}(2) \setminus P_{f(5WKY_1)}(2)|=42\),
\(|P_{f(5WKY_1)}(2) \setminus P_{f(3GIJ_1)}(2)|=117\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11111101001010100110101010111101101010001111010001001110111111010011101101110001000100011011000000101101001010100010000010011101000110000101011100001110111011010110110000100110010110111110101001001110011001010100101111010100110110000001100010001101101000000100101011011000000100011011011110001011001001101100001000010110011000000100111010011
Pair
\(Z_2\)
Length of longest common subsequence
3GIJ_1,5WKY_1
159
4
3GIJ_1,3DMD_1
132
4
5WKY_1,3DMD_1
167
4
Newick tree
[
5WKY_1:86.07,
[
3GIJ_1:66,3DMD_1:66
]:20.07
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{780
}{\log_{20}
780}-\frac{341}{\log_{20}341})=119.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3GIJ_1
5WKY_1
151
131
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]