Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3FTD_1)}(2) \setminus P_{f(6JPT_1)}(2)|=98\),
\(|P_{f(6JPT_1)}(2) \setminus P_{f(3FTD_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011010001100111001110011001010010011011110101001110011001011010001100100110001011000100111001100101110110011011100010000011111111000110010100001110111001001001101110111111010011101100001110010000011001100000110001100110011101010100101001101001100010
Pair
\(Z_2\)
Length of longest common subsequence
3FTD_1,6JPT_1
142
5
3FTD_1,5KTD_1
148
3
6JPT_1,5KTD_1
152
3
Newick tree
[
5KTD_1:76.29,
[
3FTD_1:71,6JPT_1:71
]:5.29
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{371
}{\log_{20}
371}-\frac{122}{\log_{20}122})=76.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
3FTD_1
6JPT_1
91
68
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]