Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3FST_1)}(2) \setminus P_{f(3LRD_1)}(2)|=141\),
\(|P_{f(3LRD_1)}(2) \setminus P_{f(3FST_1)}(2)|=41\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011010000110001101010101010111100001000110010010010101101001100100000001101100001101110100101010010011000100110011110101111010101010011011001101010111010101010010101101000101110011001110100010100001011101011111111001001001101001011111101101100010000111101110110110001100101001001010011000111011110000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{441
}{\log_{20}
441}-\frac{137}{\log_{20}137})=90.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
3FST_1
3LRD_1
113
81.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]