Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3EUH_1)}(2) \setminus P_{f(6PBF_1)}(2)|=36\),
\(|P_{f(6PBF_1)}(2) \setminus P_{f(3EUH_1)}(2)|=125\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010001101111100001010111001011111101010010101001011011001001100000011101001100110001100100001010110010111111000010000100101010101111010011011001100101000101110001101100101000110000001000110110001011100001110000101001000101110010101101001010000101100111010001001101100010111100001001100110100001110010001000100111100101001101000011100001010110010000100100011111000111000001110111110001000101001011011100110111101010111101011000110101011000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1170
}{\log_{20}
1170}-\frac{440}{\log_{20}440})=190.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3EUH_1
6PBF_1
242
191
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]