Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3EUE_1)}(2) \setminus P_{f(5OVT_1)}(2)|=98\),
\(|P_{f(5OVT_1)}(2) \setminus P_{f(3EUE_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010000000101110011110110100100000011011010110100011001010000001111110101101110100101110011101110011000101011000011001111101001111101011100110110010000101101100111110110111000110001010100111100110000100011001110010100100111001001010010101011100000000010101101111001010001111100101101111010110010100100100110000001001100110001001
Pair
\(Z_2\)
Length of longest common subsequence
3EUE_1,5OVT_1
144
3
3EUE_1,4YHL_1
180
5
5OVT_1,4YHL_1
164
4
Newick tree
[
4YHL_1:90.30,
[
3EUE_1:72,5OVT_1:72
]:18.30
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{529
}{\log_{20}
529}-\frac{201}{\log_{20}201})=94.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
3EUE_1
5OVT_1
117
93.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]