Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3ETJ_1)}(2) \setminus P_{f(6JNL_1)}(2)|=172\),
\(|P_{f(6JNL_1)}(2) \setminus P_{f(3ETJ_1)}(2)|=47\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001011101011011001101111111111101011111100011010100110011000110011110001111110010000110010110111011100001111100110111100001100101010101000001110001001100110101010111101101001101100010001110001111010100010100110111001101111110011010111100111010001010001101001010101100111101110010111011100100011011110101000010110011010100000001010101111111100101111100011
Pair
\(Z_2\)
Length of longest common subsequence
3ETJ_1,6JNL_1
219
3
3ETJ_1,8GXP_1
176
3
6JNL_1,8GXP_1
181
3
Newick tree
[
6JNL_1:10.27,
[
3ETJ_1:88,8GXP_1:88
]:16.27
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{456
}{\log_{20}
456}-\frac{101}{\log_{20}101})=107.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3ETJ_1
6JNL_1
143
90
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]