Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3EPC_1)}(2) \setminus P_{f(4IPE_1)}(2)|=25\),
\(|P_{f(4IPE_1)}(2) \setminus P_{f(3EPC_1)}(2)|=163\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110110011111100101100101101010010010110010010111100001100000001011110111010010101111010001000011101101000101110111010001010010101011111001001101110101000111110000111110101010011111100010100100010000100101101010100
Pair
\(Z_2\)
Length of longest common subsequence
3EPC_1,4IPE_1
188
4
3EPC_1,2ENE_1
138
3
4IPE_1,2ENE_1
262
3
Newick tree
[
4IPE_1:12.47,
[
3EPC_1:69,2ENE_1:69
]:56.47
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{932
}{\log_{20}
932}-\frac{213}{\log_{20}213})=196.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3EPC_1
4IPE_1
244
157
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]