Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3EKJ_1)}(2) \setminus P_{f(5XUG_1)}(2)|=144\),
\(|P_{f(5XUG_1)}(2) \setminus P_{f(3EKJ_1)}(2)|=39\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010000000111010110011001000000011011000000100010110111010010010111000001101010100010011101100000001110111111000010000010001000000111101101111011100100110110110010011011111110101010100101010101010010101011000101111110110010011001000100100001100111010100001110001000001010101001100101011010001011100100000001000011010011011000101110000110110011001001010011001110101010110110111001000000001001101110010101011010011001100100001001100111010101000011011010
Pair
\(Z_2\)
Length of longest common subsequence
3EKJ_1,5XUG_1
183
3
3EKJ_1,1VHM_1
185
8
5XUG_1,1VHM_1
160
3
Newick tree
[
3EKJ_1:95.66,
[
5XUG_1:80,1VHM_1:80
]:15.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{613
}{\log_{20}
613}-\frac{162}{\log_{20}162})=129.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3EKJ_1
5XUG_1
160
107
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]