Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3EIC_1)}(2) \setminus P_{f(2LVH_1)}(2)|=93\),
\(|P_{f(2LVH_1)}(2) \setminus P_{f(3EIC_1)}(2)|=33\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0001110001111010110001110111010000101101011001100110000000000001000001110111101100100110010010101101101010110010001101000000110010111100010000
Pair
\(Z_2\)
Length of longest common subsequence
3EIC_1,2LVH_1
126
2
3EIC_1,5XSQ_1
189
3
2LVH_1,5XSQ_1
175
2
Newick tree
[
5XSQ_1:98.66,
[
3EIC_1:63,2LVH_1:63
]:35.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{201
}{\log_{20}
201}-\frac{59}{\log_{20}59})=47.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
3EIC_1
2LVH_1
62
43
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]