Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3EGB_1)}(2) \setminus P_{f(4DOV_1)}(2)|=125\),
\(|P_{f(4DOV_1)}(2) \setminus P_{f(3EGB_1)}(2)|=59\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000110001100101111100111101001000001110001010110100101100101001100010001000100000111000000000110110000011011100010100000010100001001100110000010010111111000001111001101001010101100011111010111000001111001010101001000001000101100000110010110101101110010111001000010110001011010011110
Pair
\(Z_2\)
Length of longest common subsequence
3EGB_1,4DOV_1
184
3
3EGB_1,5JYK_1
172
4
4DOV_1,5JYK_1
208
4
Newick tree
[
4DOV_1:10.92,
[
3EGB_1:86,5JYK_1:86
]:15.92
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{448
}{\log_{20}
448}-\frac{163}{\log_{20}163})=84.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
3EGB_1
4DOV_1
109
84.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]