Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3EDK_1)}(2) \setminus P_{f(8CSY_1)}(2)|=53\),
\(|P_{f(8CSY_1)}(2) \setminus P_{f(3EDK_1)}(2)|=63\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110110010111111110001101110100110101110011101101001101001110101110101101011101010000000011100010100011111011001110011010100001111000100001110011010101001001111110011101110001110000101100000101001000011010001000111110011100110001110011010110011011100000111001011010000100111101110100001111001100011110011101101000100011110000001110010101110010001111101001010101000011011011110110011000100011001000101001010100111111000110110111001001010111110110110100100111000101000100000111111100101101111000001100110011010000111001011011100001101000000011111000001101101010011011101101101001111001011100111101111101
Pair
\(Z_2\)
Length of longest common subsequence
3EDK_1,8CSY_1
116
4
3EDK_1,8ZLH_1
214
3
8CSY_1,8ZLH_1
214
4
Newick tree
[
8ZLH_1:11.92,
[
3EDK_1:58,8CSY_1:58
]:60.92
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1512
}{\log_{20}
1512}-\frac{601}{\log_{20}601})=229.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3EDK_1
8CSY_1
288
238.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]