Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3DRW_1)}(2) \setminus P_{f(5GIN_1)}(2)|=64\),
\(|P_{f(5GIN_1)}(2) \setminus P_{f(3DRW_1)}(2)|=49\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000100010101011100101001001011111010000100110110100100010001001001101110110010110111111100010011000100000011101111100111101001110011110011011001110111001010101100100010110100110100110101100010110010111010100100100000101111011001011110100110000001001000100100011010000101010110100001000110011111001110010110110111000110011000010001111111100101011010000011010000011000011001011001111010110101100001110111000000101010010001010000111110011001110111100101111100101100010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{862
}{\log_{20}
862}-\frac{388}{\log_{20}388})=127.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3DRW_1
5GIN_1
150
137.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]