Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3DPL_1)}(2) \setminus P_{f(5DAN_1)}(2)|=98\),
\(|P_{f(5DAN_1)}(2) \setminus P_{f(3DPL_1)}(2)|=61\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000001001100001110001100010000101010011001001000011100001010001110101000100011011001111100100110110010100010011001000001111100101011011110000001110110010011101001000000100101001100111010001100010100101111111000100010100101100110101000110111110100011100101001001001011010001011001010001010111010100001000000111010110000111011010001001010001101100111100011000101110000100000010011011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{656
}{\log_{20}
656}-\frac{274}{\log_{20}274})=106.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3DPL_1
5DAN_1
134
114
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]